
Dialectical refinement:
Rescuing programming from the logicians

Richard Bornat
Professor of Computer Programming

School of Engineering and Information Sciences
Middlesex University

5th November 2008

1

There are two programming problems

I The novice programming problem
I The expert programming problem

Both are interesting. This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

There are two programming problems

I The novice programming problem

I The expert programming problem

Both are interesting. This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

There are two programming problems

I The novice programming problem
I The expert programming problem

Both are interesting. This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

There are two programming problems

I The novice programming problem
I The expert programming problem

Both are interesting.

This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

There are two programming problems

I The novice programming problem
I The expert programming problem

Both are interesting. This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

There are two programming problems

I The novice programming problem
I The expert programming problem

Both are interesting. This talk is about the second problem.

Most programming ‘languages’, especially including Java, address
the expert programming problem.

2

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Programming as a creative act

I take ‘programming’ to be the whole business: conception, design,
construction, verification, testing . . .

I’m very interested in ‘correct’ programs: ones with specification and
verification.

And I’m interested in inventing correct programs.

(I claim that) invention always involves trial and error.

Can trial and error be ‘logical’? Or is it illogical guesswork?

3

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity

; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it

(of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .)

. Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming.

Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification

; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification

; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used

; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention?

Can we give it a nicer name?

4

Two ways to program

I can invent a program, in a blinding flash of creativity; and then
verify it (of course I wouldn’t test it . . .). Logicians call this ad-hoc
programming.

Before the verification I have to think up a logical specification. I
don’t need the specification to start programming. Or do I? . . .

Logicians would like us to start with the specification; write a magical
(unimplementable) program which satisfies the specification; then
refine the magical program step-by-step towards something that can
be used; using refinement steps which preserve the property that the
program satisfies the specification.

The logicians’ way of programming produces a result that is correct
by construction.

Ad-hoc programs are rarely specified, even more rarely verified.

Can we defend program invention? Can we give it a nicer name?

4

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof

which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity)

which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”.

(But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot?

I think
so.

5

Dialectical programming

Lakatos, in “Proofs and Refutations”, shows the evolution over time
of Euler’s conjecture about polyhedral solids
Vertices− Edges + Faces = 2 (e.g for a cube V = 8, E = 12, F = 6).

The conjecture leads to a proof which is challenged by a
counter-example (e.g. a polyhedron with a tunnel, a polyhedron with
a central cavity) which leads to a refinement of the conjecture, a new
proof, a deeper understanding.

This is intentionally reminiscent of Hegel’s dialectic “Thesis plus
antithesis yields synthesis”. (But we are simple people, we won’t
bother with Hegel.)

Can the dialectic reach places that logical refinement cannot? I think
so.

5

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

The single-place buffer

In an aeroplane you have sensors – e.g. temperature, pressure, airflow
– and you have monitors – e.g. black-box recorders, autopilots,
display screens.

We want a simple interface between a monitor and a sensor.

The simplest is a single-place buffer: the sensor writes to it, the
monitor reads.

The sensor may write faster than the monitor reads (so there may be
missed values).

The monitor may read faster than the sensor writes (so there may be
repeated values).

But the monitor must always get complete values, not half-written
values, not half of one value and half of the next.

6

How it can go wrong

The sensor is a clock, displaying minutes m and seconds s in two
shared integer variables.

Each second it does

if s = 59 then s := 0; m := m + 1 else s := s + 1 fi

Between s := 0 and m := m + 1 the clock is slow (by 60 seconds). If
the monitor reads at that instant it sees a half-written value.

If the sensor does m := m + 1; s := 0 then the clock can be seen as
fast (by 59 seconds).

7

How it can go wrong

The sensor is a clock, displaying minutes m and seconds s in two
shared integer variables.

Each second it does

if s = 59 then s := 0; m := m + 1 else s := s + 1 fi

Between s := 0 and m := m + 1 the clock is slow (by 60 seconds). If
the monitor reads at that instant it sees a half-written value.

If the sensor does m := m + 1; s := 0 then the clock can be seen as
fast (by 59 seconds).

7

How it can go wrong

The sensor is a clock, displaying minutes m and seconds s in two
shared integer variables.

Each second it does

if s = 59 then s := 0; m := m + 1 else s := s + 1 fi

Between s := 0 and m := m + 1 the clock is slow (by 60 seconds). If
the monitor reads at that instant it sees a half-written value.

If the sensor does m := m + 1; s := 0 then the clock can be seen as
fast (by 59 seconds).

7

How it can go wrong

The sensor is a clock, displaying minutes m and seconds s in two
shared integer variables.

Each second it does

if s = 59 then s := 0; m := m + 1 else s := s + 1 fi

Between s := 0 and m := m + 1 the clock is slow (by 60 seconds). If
the monitor reads at that instant it sees a half-written value.

If the sensor does m := m + 1; s := 0 then the clock can be seen as
fast (by 59 seconds).

7

How it can go wrong

The sensor is a clock, displaying minutes m and seconds s in two
shared integer variables.

Each second it does

if s = 59 then s := 0; m := m + 1 else s := s + 1 fi

Between s := 0 and m := m + 1 the clock is slow (by 60 seconds). If
the monitor reads at that instant it sees a half-written value.

If the sensor does m := m + 1; s := 0 then the clock can be seen as
fast (by 59 seconds).

7

Dijkstra’s solution: atomic accesses

Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null in

. . .
write(w) =̂ 〈b := w〉

. . .
read() =̂ local y in

〈y := b〉;
return y

ni



Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null in

. . .
write(w) =̂ 〈b := w〉

. . .
read() =̂ local y in

〈y := b〉;
return y

ni



Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null in

. . .
write(w) =̂ 〈b := w〉

. . .
read() =̂ local y in

〈y := b〉;
return y

ni



Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.

8

Dijkstra’s solution: atomic accesses
local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


Atomicity means indivisibility. Interleaving will do.

Atomicity can be done with ‘semaphores’ as on the railways (block
signalling).

For specification purposes I add a couple of auxiliary variables ws and
rs.

The specification is that the read sequence destuttered is a
subsequence of ws and the last element of ws is always in b.
brsc 4 ws ∧ wsΩ = b.

But atomicity means waiting, and waiting isn’t simple or even certain.
8

Cut down waiting with a two-slot buffer

local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Data refinement! Now brsc 4 ws ∧ wsΩ = c[l].

9

Cut down waiting with a two-slot buffer

local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni



Data refinement! Now brsc 4 ws ∧ wsΩ = c[l].

9

Cut down waiting with a two-slot buffer

local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Data refinement!

Now brsc 4 ws ∧ wsΩ = c[l].

9

Cut down waiting with a two-slot buffer

local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Data refinement! Now brsc 4 ws ∧ wsΩ = c[l].

9

Simplify atomicity in the writer

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni



local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Stores naturally serialise small reads and writes. Still
brsc 4 ws ∧ wsΩ = c[l].

10

Simplify atomicity in the writer

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni



Stores naturally serialise small reads and writes. Still
brsc 4 ws ∧ wsΩ = c[l].

10

Simplify atomicity in the writer

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Stores naturally serialise small reads and writes.

Still
brsc 4 ws ∧ wsΩ = c[l].

10

Simplify atomicity in the writer

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


Stores naturally serialise small reads and writes. Still
brsc 4 ws ∧ wsΩ = c[l].

10

(Can’t) simplify atomicity in the reader

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Looks plausible, but it’s broken. Still wsΩ = c[l], but no longer
brsc 4 ws.

11

(Can’t) simplify atomicity in the reader
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni



local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Looks plausible, but it’s broken. Still wsΩ = c[l], but no longer
brsc 4 ws.

11

(Can’t) simplify atomicity in the reader
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni



Looks plausible, but it’s broken. Still wsΩ = c[l], but no longer
brsc 4 ws.

11

(Can’t) simplify atomicity in the reader
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Looks plausible, but it’s broken.

Still wsΩ = c[l], but no longer
brsc 4 ws.

11

(Can’t) simplify atomicity in the reader
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Looks plausible, but it’s broken. Still wsΩ = c[l]

, but no longer
brsc 4 ws.

11

(Can’t) simplify atomicity in the reader
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Looks plausible, but it’s broken. Still wsΩ = c[l], but no longer
brsc 4 ws.

11

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni



From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written; if it then comes back quickly, it can see the first
thing written!! Also note 〈c[rt] := w〉 〈y := c[rt]〉 .

12

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni


From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

l = rt

start

l = rt

start

l = !rt l = !rt
w2 w3 w2

w3

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written; if it then comes back quickly, it can see the first
thing written!! Also note 〈c[rt] := w〉 〈y := c[rt]〉 .

12

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni


From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written; if it then comes back quickly, it can see the first
thing written!! Also note 〈c[rt] := w〉 〈y := c[rt]〉 .

12

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni


From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written

; if it then comes back quickly, it can see the first
thing written!! Also note 〈c[rt] := w〉 〈y := c[rt]〉 .

12

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni


From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written; if it then comes back quickly, it can see the first
thing written!!

Also note 〈c[rt] := w〉 〈y := c[rt]〉 .

12

What goes wrong?
local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in

〈〈wt := !l〉〉; w1

〈c[wt] := w〉; w2

〈〈l := wt; ws := ws.w〉〉 w3

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉; r1

〈y := c[rt]; rs := rs.y〉; r2

return y
ni


From the point of view of the reader, after 〈〈rt := l〉〉, the writer
behaves like this finite-state machine:

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

If the reader comes in at box 1 or 2 and reads at box 4, it will see the
second value written; if it then comes back quickly, it can see the first
thing written!! Also note 〈c[rt] := w〉 〈y := c[rt]〉 .12

Can we repair it (1)?
All our problems (ordering, collisions) are caused by the third action

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

Can we detect when that action happens?

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


No, because the writer can’t tell the difference between the first and
the third actions.

13

Can we repair it (1)?
All our problems (ordering, collisions) are caused by the third action

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

Can we detect when that action happens?

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni



No, because the writer can’t tell the difference between the first and
the third actions.

13

Can we repair it (1)?
All our problems (ordering, collisions) are caused by the third action

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

Can we detect when that action happens?

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


No, because the writer can’t tell the difference between the first and
the third actions.

13

Can we repair it (2)?
All our problems (ordering, collisions) are caused by the third action

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

Can we detect when it might happen?

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni



Yes: it becomes possible after the second action.

14

Can we repair it (2)?
All our problems (ordering, collisions) are caused by the third action

l = rt

start

l = rt

start

l = !rt l = !rt
c[!rt] := w l := !rt c[rt] := w

l := rt

Can we detect when it might happen?

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


Yes: it becomes possible after the second action.

14

A repair (back to correctness)

The writer signals when disaster becomes possible; the reader
incorporates the signal in its answer.

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
〈y := c[rt]〉;
〈〈rt = ok; rs := rs.(rt, y)〉〉;
return (rt, y)

ni



– and then we notice that we don’t need atomic buffer accesses any
more.

If r̃s is rs with the (false,) results taken out and the true labels
discarded, then we have br̃sc 4 ws ∧ wsΩ = c[l].

15

A repair (back to correctness)

The writer signals when disaster becomes possible; the reader
incorporates the signal in its answer.

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
〈y := c[rt]〉;
〈〈rt = ok; rs := rs.(rt, y)〉〉;
return (rt, y)

ni


– and then we notice that we don’t need atomic buffer accesses any
more.

If r̃s is rs with the (false,) results taken out and the true labels
discarded, then we have br̃sc 4 ws ∧ wsΩ = c[l].

15

A repair (back to correctness)

The writer signals when disaster becomes possible; the reader
incorporates the signal in its answer.

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok; rs := rs.(rt, y)〉〉;
return (rt, y)

ni


– and then we notice that we don’t need atomic buffer accesses any
more.

If r̃s is rs with the (false,) results taken out and the true labels
discarded, then we have br̃sc 4 ws ∧ wsΩ = c[l].

15

A repair (back to correctness)

The writer signals when disaster becomes possible; the reader
incorporates the signal in its answer.

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok; rs := rs.(rt, y)〉〉;
return (rt, y)

ni


– and then we notice that we don’t need atomic buffer accesses any
more.

If r̃s is rs with the (false,) results taken out and the true labels
discarded, then we have br̃sc 4 ws ∧ wsΩ = c[l].

15

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free)

to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto)

to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free)

to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos);

we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”;

perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

Summary so far, and a criticism

We have gone from an atomic single-slot buffer (not wait-free) to an
atomic double-slot buffer (ditto) to a faulty not so completely atomic
double-slot buffer (still not wait-free) to a working wait-free
non-atomic double-slot buffer that tells us when it’s succeeded.

We certainly haven’t proceeded by “a sequence of true
understatements” (Lakatos); we have made at least one “false
overstatement”; perhaps we have made a step of “exception barring”.

I see the step that includes the ‘ok’ variable as an example of thesis
(program) plus antithesis (counter-example) yielding synthesis
(repaired program).

But what use is the pair (false, something)? What can a user do but
ignore something and try to read again?

16

A more honest repair
local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉

until rt;
〈〈rs := rs.y〉〉;
return y

ni



Obviously not wait-free. But otherwise repaired. Finite-state machine
now

ok ∧ l = Lstart ok ∧ l = !L

ok ∧ l = Lstart

¬ok

c[!L] := w

l := !L

ok := false

ok := false

c[!L] := w

c[L] := w

l := !l

17

A more honest repair
local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉

until rt;
〈〈rs := rs.y〉〉;
return y

ni


Obviously not wait-free.

But otherwise repaired. Finite-state machine
now

ok ∧ l = Lstart ok ∧ l = !L

ok ∧ l = Lstart

¬ok

c[!L] := w

l := !L

ok := false

ok := false

c[!L] := w

c[L] := w

l := !l

17

A more honest repair
local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉

until rt;
〈〈rs := rs.y〉〉;
return y

ni


Obviously not wait-free. But otherwise repaired.

Finite-state machine
now

ok ∧ l = Lstart ok ∧ l = !L

ok ∧ l = Lstart

¬ok

c[!L] := w

l := !L

ok := false

ok := false

c[!L] := w

c[L] := w

l := !l

17

A more honest repair
local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉

until rt;
〈〈rs := rs.y〉〉;
return y

ni


Obviously not wait-free. But otherwise repaired. Finite-state machine
now

ok ∧ l = Lstart ok ∧ l = !L

ok ∧ l = Lstart

¬ok

c[!L] := w

l := !L

ok := false

ok := false

c[!L] := w

c[L] := w

l := !l

17

Try three slots

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈d := w〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then 〈y := d〉 else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


The writer can first write in a side-channel, then signal that mayhem
approaches. If it gets the signal, the reader uses the side-channel.

Perhaps this will work ... but it’s more likely to work if the writer only
writes when the reader is asking for it.

And then I notice that they alternate, and I can use non-atomic read
and write. This is Harris’s algorithm, rationally developed.

18

Try three slots

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈d := w〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then 〈y := d〉 else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


The writer can first write in a side-channel, then signal that mayhem
approaches. If it gets the signal, the reader uses the side-channel.

Perhaps this will work ...

but it’s more likely to work if the writer only
writes when the reader is asking for it.

And then I notice that they alternate, and I can use non-atomic read
and write. This is Harris’s algorithm, rationally developed.

18

Try three slots

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then 〈d := w〉; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then 〈y := d〉 else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


The writer can first write in a side-channel, then signal that mayhem
approaches. If it gets the signal, the reader uses the side-channel.

Perhaps this will work ... but it’s more likely to work if the writer only
writes when the reader is asking for it.

And then I notice that they alternate, and I can use non-atomic read
and write. This is Harris’s algorithm, rationally developed.

18

Try three slots

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


The writer can first write in a side-channel, then signal that mayhem
approaches. If it gets the signal, the reader uses the side-channel.

Perhaps this will work ... but it’s more likely to work if the writer only
writes when the reader is asking for it.

And then I notice that they alternate, and I can use non-atomic read
and write.

This is Harris’s algorithm, rationally developed.

18

Try three slots

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


The writer can first write in a side-channel, then signal that mayhem
approaches. If it gets the signal, the reader uses the side-channel.

Perhaps this will work ... but it’s more likely to work if the writer only
writes when the reader is asking for it.

And then I notice that they alternate, and I can use non-atomic read
and write. This is Harris’s algorithm, rationally developed.

18

Recapitulation

local b = null in

. . .
write(w) =̂
〈b := w〉

. . .
read() =̂

local y in
〈y := b〉;
return y

ni


– Dijkstra’s single-place buffer.

Proof available on application.

19

Recapitulation

local b = null, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂
〈b := w; ws := ws.w〉

. . .
read() =̂

local y in
〈y := b; rs := rs.y〉;
return y

ni


– with auxiliary ws and rs to show brsc 4 ws ∧ wsΩ = b.

Proof available on application.

19

Recapitulation

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂〈

c[!l] := w; l := !l;
ws := ws.w

〉 . . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


– data refinement to two slots and brsc 4 ws ∧ wsΩ = c[l].

Proof available on application.

19

Recapitulation

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y in
〈y := c[l]; rs := rs.y〉;
return y

ni


– atomicity refinement in the writer; still brsc 4 ws ∧ wsΩ = c[l].

Proof available on application.

19

Recapitulation

local c[2] = (null, null), l = 0, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt; ws := ws.w〉〉

ni

. . .
read() =̂

local y, rt in
〈〈rt := l〉〉;
〈y := c[rt]; rs := rs.y〉;
return y

ni


– atomicity refinement in the reader; now brsc 64 ws ∧ wsΩ = c[l].

Proof available on application.

19

Recapitulation

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok; rs := rs.(rt, y)〉〉;
return (rt, y)

ni


– exception barring; now br̃sc 4 ws ∧ wsΩ = c[l].

Proof available on application.

19

Recapitulation

local c[2] = (null, null), l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈ok := false〉〉;

ni

. . .
read() =̂

local y, rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉

until rt;
〈〈rs := rs.y〉〉;
return y

ni


– more honest exception barring; once again brsc 4 ws ∧ wsΩ = c[l],
but no longer wait-free.

Proof available on application.

19

Recapitulation

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


– three slots; brsc 4 ws ∧ wsΩ = c[l]; wait-free.

Proof available on application.

19

Recapitulation

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d else skip fi;
〈〈rs := rs.y〉〉;
return y

ni


– three slots; brsc 4 ws ∧ wsΩ = c[l]; wait-free.

Proof available on application.

19

A programmer’s instinct demands . . .

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d

else 〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni


– the reader tells the writer when there’s no need to use the side
channel.

It’s no longer true that the writer only writes when ok. But
from the point of view of the reader, nothing has changed!

In fact the writer writes when ok or the reader is asleep. Easy to fix
with another auxiliary variable, proof available on request.

20

A programmer’s instinct demands . . .

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d

else 〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni


– the reader tells the writer when there’s no need to use the side
channel. It’s no longer true that the writer only writes when ok.

But
from the point of view of the reader, nothing has changed!

In fact the writer writes when ok or the reader is asleep. Easy to fix
with another auxiliary variable, proof available on request.

20

A programmer’s instinct demands . . .

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d

else 〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni


– the reader tells the writer when there’s no need to use the side
channel. It’s no longer true that the writer only writes when ok. But
from the point of view of the reader, nothing has changed!

In fact the writer writes when ok or the reader is asleep. Easy to fix
with another auxiliary variable, proof available on request.

20

A programmer’s instinct demands . . .

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d

else 〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni


– the reader tells the writer when there’s no need to use the side
channel. It’s no longer true that the writer only writes when ok. But
from the point of view of the reader, nothing has changed!

In fact the writer writes when ok or the reader is asleep.

Easy to fix
with another auxiliary variable, proof available on request.

20

A programmer’s instinct demands . . .

local c[2] = (null, null), d = null, l = 0, ok, ws = 〈 〉.null, rs = 〈 〉 in

. . .
write(w) =̂

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
read() =̂

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt = ok〉〉;
if ¬rt then y := d

else 〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni


– the reader tells the writer when there’s no need to use the side
channel. It’s no longer true that the writer only writes when ok. But
from the point of view of the reader, nothing has changed!

In fact the writer writes when ok or the reader is asleep. Easy to fix
with another auxiliary variable, proof available on request.

20

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store.

Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand.

That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

Pipelines, caches, weak memory models

In my argument I relied on sequencing of actions and on serialisation
of (small) memory accesses.

In modern machines these assumptions don’t hold.

Pipelines reorder instructions if there isn’t an obvious dependency –
e.g. in c[wt] := w; l := wt or in d := w; ok := false.

Caches delay interaction with the store. Viewed from another
machine, store actions are reordered.

So-called “weak memory models” are difficult to understand. That is,
to understand well enough to reason about programs running under
them.

Maybe an EPSRC project . . .

21

And finally

Programming is creative, experimental.

That means we will go wrong.

When we go wrong we can fix our program, refine our conjecture, or
both.

The mechanisms of refinement can guide us, but we may (I would say
must) sometimes make “false overstatements”.

Lakatos’s dialectic lives!

22

And finally

Programming is creative, experimental.

That means we will go wrong.

When we go wrong we can fix our program, refine our conjecture, or
both.

The mechanisms of refinement can guide us, but we may (I would say
must) sometimes make “false overstatements”.

Lakatos’s dialectic lives!

22

And finally

Programming is creative, experimental.

That means we will go wrong.

When we go wrong we can fix our program, refine our conjecture, or
both.

The mechanisms of refinement can guide us, but we may (I would say
must) sometimes make “false overstatements”.

Lakatos’s dialectic lives!

22

And finally

Programming is creative, experimental.

That means we will go wrong.

When we go wrong we can fix our program, refine our conjecture, or
both.

The mechanisms of refinement can guide us, but we may (I would say
must) sometimes make “false overstatements”.

Lakatos’s dialectic lives!

22

And finally

Programming is creative, experimental.

That means we will go wrong.

When we go wrong we can fix our program, refine our conjecture, or
both.

The mechanisms of refinement can guide us, but we may (I would say
must) sometimes make “false overstatements”.

Lakatos’s dialectic lives!

22

