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Abstract

Model driven functional system testing generates test
scenarios from behavioural and structural models. In order
to autmatically generate tests, conditions such as invariants
and pre-/post-conditions must be precisely defined. UML
provides the Object Constraint Language (OCL) for this
purpose; however OCL expressions can become very com-
plex. This paper describes an approach that allows many
commonly found OCL patterns to be expressed as snapshot
patterns that correspond directly to the information model
diagrams. Behaviour is constructed as chains of snapshots,
or filmstrips. Snapshots and filmstrips are as expressive as
UML behaviour models and OCL but it is argued that they
are more accessible and more modular.

1 Introduction

It is important to integrate model based testing with de-
velopment processes and to reuse models from the design
processes where possible [9]. The facilities provided by
UML are ideally placed to capture functional requirements.
However, as described in [2], although models can be used
for an explicit description of a test case, the functional re-
quirements expressed in UML using representations such as
use-case models and activity diagrams are often informal,
have a weak semantics and are weakly integrated.

Design models are often detailed and can rapidly be-
come out of date with respect to the implementation of a
system. Tests generated from low level models can work
directly on the implementation (such as JUnit in [3]), how-
ever the tests must be expressed in terms of implementation
detail. The essential idea of model based testing is to com-
pare an abstract specification to a concrete implementation
[14]. Tests generated from models that describe high-level
functional requirements and associated information struc-
tures [11] change much more slowly than design models.

Current approaches to model based testing do not inte-
grate the process of test generation with the requirement
models including use-cases and class models. As pointed
out in [13], the process of deriving tests from requirements
tends to be unstructured; artifacts that explicitly encode the
intended behaviour can help minitgate the implications of
these problems.

This paper proposes a novel approach and language for
model based test generation that is based on integrating
functional requirements models using snapshots and film-
strips. Section 2 describes the approach and motivates the
technology; section 3 describes snapshot patterns as the ba-
sis of invariants and filmstrip steps; section 4 describes a
language for filmstrips; finally 5 places the work in context
and describes future directions.

2 Functional Testing and Filmstrips

Functional requirements for a system are often repre-
sented using UML use-case models that show the key func-
tionality from an external viewpoint. The use case function-
ality consists of two key elements: the logical interface and
the physical interface. The physical interface is concerned
with the features of user iteraction with the system, for ex-
ample GUI widgets. The logical interface is concerned with
the events and data flow that occur between users and the
system. Testing physical interfaces involves issues such as
human factors which we do not address here; this paper is
about testing logical interface functionality.

Use cases can be decomposed using «extends» and
«includes» relationships. Ultimately, this decomposi-
tion can lead to a fine grain desription of the system func-
tionality in terms of the events that flow between a user and
the system. Use cases can be associated with use-case Sce-
narios that describe the information that flows between the
use and the system. Scenarios are expressed as structured
natural language and therefore cannot be processed by ma-
chine.



Figure 1. Testing Architecture

The information content of a system is often expressed as
UML class models. The semantics of an information model
can be (partially) expressed as a collection on invariants on
classes. The invariants can be expressed as OCL expres-
sions. Each class has a collection of operations. Each oper-
ation can be specified in terms of its effect, when called, on
the information model. The effect can be captured precisely
using pre- and post- conditions expressed using OCL.

Given an implementation of a system, it is desirable to
generate tests in terms of the model that was used to specify
and design it. Given a relationship between the informa-
tion model (logical system view) and the implementation
(physical system view) then the information model can be
used to generate individual operation tests in terms of the
correct changes to the information states expressed as pairs
of snapshots. Furthermore, given behavioural models, such
as state machines, it is possible to construct tests in terms of
sequences of operations and the required information states.
Sequences of snapshots produced by operations in this way
will be referred to as filmstrips.

If the use case models are decomposed to a sufficiently
fine grain level then there can be a one-to-one corre-
spondence between the class operations in the information
model and the use cases. This is attractive because it pro-
vides a seamless development process from initial require-
ments through to tests that can be applied to an implemen-
tation. Figure 1 shows the key features of the approach.

Tests described in this way are shielded from design and
implementation decisions via a mapping. Changes to the
implementation will often require only minor changes to the
mapping and therefore leave the functional tests intact.

Consider the requirement on modelling technologies that
would support figure 1. We will limit ourselves to UML. If
use cases are used to represent logical information opera-
tions then they do not provide any mechanism for precisely
defining arguments and control flow. This information can
be expressed in terms of other UML models, however the
information in use-case models cannot be linked to other
models in any precise way. It would be useful to minim-
lly connect use-cases to class operations to support an inte-
grated development process.

Snapshots are defined as collections of objects that sat-
isfy some conditions. Object models can be used to describe
configurations of objects, but they are ground in the sense
that there is no semantics for object diagrams with variables.
Generality can be accommodated in terms of class models,
however structural constraints have to be expressed in gen-
eral terms using OCL which is either too general (applies to
all) or is very complex when the same information could be
made more accessible using object diagrams.

Filmstrips can be expressed using sequence diagrams,
but then how do we add the test case information (such as
where to start and what to do when it goes wrong)?

Therefore we address these issues by proposing a lan-
guage extension. Where possible structural snapshots are
expressed using object pattern diagrams (with OCL). As
much as possible is pushed into diagrams. Filmstrips are
expressed using a simple scripting language (that ultimately
might be defined as the semantics of merging multiple UML
behaviour diagrams).

Figure 2 is a typical information model (adapted from
[6]) arising in the design of a system. A sales system con-
sists of a contacts database, an order system, and an ac-
counts system. Initial contacts, or prospects, are added by
sales teams to a collection of contacts databases that consti-
tute a CRM system. Contacts are converted into customers
when they register with the company and an order system
manages their commercial transactions. Orders for items
and eventually fulfilled on a given date when the items are
packaged up, labelled and shipped to the customer. The
sales system will be used to provide examples of the use
of snapshot patterns and filmstrips in the rest of this paper.
Note that the association role end names default to the class
names, pluralized where appropriate.

3 Snapshots

An information model describes the logical structure of
information in a system. This paper proposes that the in-
formation model is used as the basis of tests by using a
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Figure 2. Information Model

Figure 3. Initial State

mapping from snapshot patterns and filmstrips, expressed
in terms of the information model, in order to generate tests
on the implementation under test. This section describes the
features of snapshot patterns.

A snapshot pattern is an object diagram. The object dia-
gram must be consistent in terms of object and link types
with an associated information model. A snapshot pat-
tern that conforms to the rules of object diagrams is ground
(meaning it contains no variables). A ground snapshot pat-
tern can be used to describe a particular system state be-
cause the information model mapping can be used to trans-
form it to implementation data. This is useful when creat-
ing test cases since a ground snapshot is an implementation
independent description of the starting point for a test sce-
nario.

For example figure 3 is a ground snapshot describing a
sales system with two customers one of whom has an ac-
count. Notice that the snapshot labels one of the objects

Figure 4. Accounts must have customers

«root». In general, each snapshot must have at least one
root object. Where the root object might be ambiguous, the
«root» label can be used.

One use of snapshots is to express system invariants.
These are conditions that must hold at key points (gener-
ally before and after each use case) during the life-time of
a system. Invariants are general rules and as such cannot be
expressed using ground snapshots. Non-ground snapshots
include variables. A variable may occur as the identity of
an object or as the value of a slot. Variables in snapshots
will be denoted as a ? followed by a name in snapshot pat-
terns.

Figure 4 shows an example invariant expressed using a
snapshot pattern. The invariant requires that at all times if
there is an account then there must be a customer with the
same customer identifier. This example shows a number of
features of snapshot patterns:

• quantification is expressed using a box containing a
sub-snapshot pattern. Each item that is the subject of
quantification is shown as a root object.

• variables may occur more than once. Each occurrence
of a variable must resolve to the same value when the
pattern is mapped to the implementation.

• nested boxes are used to reflec scope and t nested quan-
tification. In the example, for each account, there must
exist a customer with the same id.

• links may cross box boundaries and, in general, links
(and repeated variables) can be used to show sharing
of structure.

The example invariant can be expressed as follows in OCL:
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Figure 5. Customers must have Ids

context SalesSystem
accountsSystem.accounts->forAll(a |

orderSystem.customers->exists(c |
a.cid = c.cid))

Whilst the semantics of the examples in the two languages
are the same, OCL is often criticised by practitioners as be-
ing difficult to understand. This paper proposes that snap-
shot patterns make a contribution by offering precision us-
ing a notation that is familiar to modellers.

Figure 5 shows an example invariant that involves nega-
tion. It states that the identifier of each customer in the sys-
tem must be a non-empty string. Consider the method that is
used by a modeller when constructing this invariant. Firstly,
the modeller constructs a snapshot consisting of two objects
one of which is a root. The snapshot expresses an illegal
configuration of objects that should be ruled out. A nega-
tion box is then drawn around the illegal object: in this case
the customer with an illegal id. The snapshot is then anal-
ysed for links that are instances of associations with mul-
tiplicities other than 1. The customers association has
a * multiplicity, therefore the snapshot pattern must have
a quantification box with the customer object as its root.
Since we want to make all customers conform to the snap-
shot pattern, a forall box is used.

Figure 6 shows an example of an invariant that is ex-
pressed using snapshot patterns including OCL expressions.
The invariant states that all customers must have a unique
customer identifier. The forall quantification box has
two roots meaning that it must hold for all pairs of cus-
tomers. The nested if-then box is a rule that states if
the snapshot pattern in the if-part holds then the snapshot
pattern in the then-part must also hold. OCL expressions
are also snapshot patterns, in this case, OCL is used to state
that of the two customers are not the same then the customer
identifiers must be different.

The invariant expressed in figure 6 is a commonly occur-

Figure 6. Unique customer identifiers

Figure 7. Special Syntax

ring property of information systems. It is often the case
that one or more properties of a class are unique (possibly
in a given context). Figure 7 shows an example of how spe-
cial syntax can be invented that captures a common pattern.
Snapshot patterns can use re-write rules to define new ab-
stractions, in this case, figure 7 is defined in terms of figure
6 with the suitable introduction of structure and variables.

Snapshot patterns are named and can be expressed using
an alternative textual syntax. For example, the following
definition corresponds to figure 4:

snapshot AccountsHaveCustomers {
root object : SalesSystem {
orderSystem = ?os
accountSystem = ?as

}
object ?os : OrderSystem {
customer = ?co
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}
object ?as : AccountSystem {

accounts forall {
root object ?a : Account {

cid = ?c
}
exists {

root object ?co : Customer {
cid = ?c

}
}

}
}

}

The snapshot pattern language outlines above can be used as
a serialization format and is arguably easier to use in terms
of semantic definitions and transformation processing.

This section has described snapshot patterns and given
a collection of examples. Snapshot patterns consist of ob-
jects, with slots and links. The identifiers of objects and
the values of slots can be variables. The syntax of snap-
shot patterns are constructively defined in terms of: OCL;
objects, slots and links; quantification (universal and exis-
tential); negation; disjunction (not shown); conjunction (not
shown); implication (if-then). New forms of snapshot
patterns can be defined using rewrite rules.

4 Filmstrips

The previous section has described snapshot patterns that
are used to represent logical system states. Ground snap-
shots are used to represent particular system states, for ex-
ample the starting point for test scenarios. Non-ground
snapshots contain variables and quantification and represent
sets of system states. A non-ground snapshot can be used as
a system invariant or to describe part of a sequence of steps
performed by a system.

A sequence of steps involving pairs of logical system
states is called a filmstrip. Each pair is called a filmstrip
step and involves a system operation arising from a use-
case. Given a mapping from a logical information model
to a physical implementation, a filmstrip is a test scenario
describing the expected sequence of steps performed by the
system.

UML provides behavioural models (statecharts, collabo-
ration diagrams, sequence diagrams) and OCL that can be
used to express filmstrips. The information used to express
filmstrips in UML is distributed amongst the various mod-
els. For example, a statechart described a system behaviour
from the perspective of a single class whereas a sequence
diagram describes behaviour in terms of a collection of ob-
jects. Pre and post conditions on system states are expressed
using OCL.

Figure 8. The PersonExists Snapshot Pattern

There is no precise semantics for denoting filmstrip be-
haviour in UML. Individual behaviour models do not have
a semantics and the composition of the different behaviour
models does not have a semantics. Furthermore, there is lit-
tle support in UML for managing the complexity and sup-
porting reuse with respect to expressing behaviour.

This paper proposes a language for expressing filmstrips
in terms of snapshot patterns. The language can be given
a precise semantics [4, 5] and can be used as the basis for
expressing both individual and compositional behaviour of
UML models. Furthermore, the filmstrip language aims
to support modularity by allowing snapshot patterns to be
named and reused in different contexts.

Filmstrips are defined in terms of sequences of steps.
Each step consists of a named operation, its arguments, an
optional return value, and a pre- and post-condition. Pre-
and post-conditions are expressed as snapshot patterns. A
snapshot pattern may be named and reused.

For example, consider defining a step that adds a new
contact to the contacts database. Figure 8 defines a snapshot
pattern that requires a person to exist. Note that both the
person and the person identifier are specified as variables.
Using variables for the elements in the snapshot will allow
it to be used in a number of different contexts.

The filmstrip language allows snapshot patterns to be
named and defined. For example:

let PersonExists =
snapshot {

root object : ContactsDatabase {
contacts exists {
root object ?person : Person {

cid = ?person_id
}

}
}

in ...
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Figure 9. addContact(c) pre-condition

The body of a filmstrip expression may contain local
snapshot definitions, steps and invariant specifications. An
invariant is a snapshot that must hold over a given filmstrip.
Assuming that the invariants from the previous section are
already defined and should hold at all times:

always AccountsHaveCustomers and
CustomerIDNotEmpty and
UniqueCustomerIds {

let PersonExists = ...
in ...

}

Figure 9 shows the precondition of the addContact(c)
operation where c is the supplied identifier. The pre-
condition reuses the definition of PersonExists, but
places it into a negation box which forces a person with the
supplied id c to be absent.

Snapshot patterns can be transformed by replacing vari-
able names in order to make operation arguments, return
values, and variables in pre- and post-conditions consistent.
The syntax for performing renaming is S[n/o] where S
is a snapshot pattern, n is a new variable name and o is a
variable name that is to be replaced in S.

The post-condition for addContact(c) simply reuses
the PersonExists snapshot pattern and renames the
variables in order to make them consistent. This can be
expressed in the filmstrip language as:

let PersonExists = ...
in step addContact(c) {

pre not PersonExists[?c/?person_id]
post PersonExists[?c/?person_id]

}

Now consider converting from a prospect (a person with
whom the sales force has had contact) to a customer. The
operation convertContact(c) requires that the system
adds a new customer and account to the sales system. We
must ensure that all the identifiers match up between the
contacts database, the order system and the accounts sys-
tem.

Figure 10 shows the pre-condition for
convertContact(c). It assumes the definition of

Figure 10. convertContact(c) pre-condition

Figure 11. convertContact(c) post-condition

a snapshot pattern for AccountExists which is equiv-
alent to PersonExists (and could be defined by a
suitable renaming). The pre-condition requires that there is
a prospect with the supplied customer id but that there is no
account with that id.

The post-condition for convertContact(c) is
shown in figure 11. This requires that there is both a
prospect and an account with the given id. Since we have
established the invariant (see section 3) that every account
must have an appropriate customer entry in the order sys-
tem then the required state is achieved. The complete step
can be defined as follows:

always ... {
let PersonExists = ...

AccountExists = ...
in step addContact(c) {

...
}
step convertContact(c) {
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Figure 12. The placeOrder(c) pre-condition

pre PersonExists[?c/?person_id] and
not AccountExists[?c/?account_id]

post PersonExists[?c/?person_id] and
AccountExists[?c/?account_id]

}

The convertContact(c) step is equivalent to:

always PersonExists[?c/?person_id] {
step convertContact(c)

pre not AccountExists[?c/?account_id]
post AccountExists[?c/?account_id]

}
}

Finally, consider placing an order. A customer with a given
identifier places an order. The system produces an order
with a unique order identifier. This example is slightly
different from the previous examples since the informa-
tion model shown in figure 2 requires that an order is
shared between the customer and the order system. The
placeOrder(c) operation must ensure that a customer
with the supplied identifier exists and that a unique order is
created.

Assuming the snapshot OrderExists and that
the order identifier is o then the pre-condition for
placeOrder(c) is shown in figure 12. The post-
condition must achieve two things: it must ensure the exis-
tence of an order and the order must be shared between the
customer and the order processing system. This is shown in
figure 13.

Sharing is achieved in the post-condition of
placeOrder(c) by consistently renaming the vari-
ables used to represent the object identities of the customer
and the order. The final step is expressed int he filmstrip
language as follows:

let Sharing =

Figure 13. The placeOrder(c) post-
condition

snapshot {
object ?x:Customer{}
object ?y:Order{}

}
in always CustomerExists[

?c/?customer_id,
?x/?customer] {

step o = placeOrder(c) {
pre = not OrderExists[?o/?order_id]
post Sharing and

OrderExists[?o/?order_id,
?y/?order]

}
}

Notice that the identity of the new order is returned from the
call of placeOrder(c). This allows the pre-condition to
force the absence of the order before it is required by the
post-condition.

5 Analysis and Review

The AGEDIS tools for model based testing [7] uses a
behavioural description that consists of statecharts and a
scripting language. The proposed filmstrip language in this
paper is more abstract since it does not rely on an action
language to defined the effect of system operations.

[10] describes a number of approaches to model based
testing that differ in terms of the type and number of models
used. This work falls into the category of model based test-
ing whereby testing models are constructed manually and
differ from the design models used to construct the imple-
mentation.

OCL is used as the source of tests in a number of sys-
tems. For example [15] generate code from post-conditions
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expressed as OCL. This paper argues that the use of snap-
shot patterns can be integrated with the modelling process
and can be used to capture many aspects of tests without
resorting to OCL.

Scenarios are proposed in [1] as the basis for model
based testing which appears to be very similar to the ap-
proach proposed in this paper. Unfortunately, [1] is de-
scribed at the proposal stage and does not contain any de-
tails of the mechanisms used to express the scenarios or the
test cases. Diagrams have been proposed as the basis for
constraints in [8] however these are not based on a standard
notation such as UML. Visual constraint diagrams are de-
scribed in [12] as the basis of system verification.

An earlier version of this work was presented as an in-
vited talk at an ASTRANet workshop [4]. The presentation
describes implementation features of the approach includ-
ing a virtual machine that can be used to check snapshot
patterns, a method for attaching snapshot patterns and film-
strips to Java programs and an XML format for describ-
ing test cases. The XMF system has been used to develop
a domain specific language for testing that is the basis for
the proposed filmstrip language in this paper [5]. The next
phase in this work aims to define snapshot patterns as a pro-
file for UML that integrates with use-cases and behaviour
models.
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