Problems 6:

Stochastic differential equations and integrals

Roman Belavkin

Middlesex University

Question 1

Is the process x(t), described by a stochastic differential equation $dx(t) = x(t)[\mu dt + \sigma dw(t)]$, differentiable at any t? Is the process $y(t) = \ln(x(t))$ differentiable?

Answer: No, the process x(t) is nowhere differentiable, because dx contains stochastic differential dw (white noise).

Question 2

Consider the following stochastic differential equations:

- a) $dx = \mu dt + \sigma dw$
- **b)** $dx = \mu x dt + \sigma dw$
- c) $dx = x(\mu dt + \sigma dw)$
- d) $dx = \sin(x) dt + \cos(x) dw$

What are the drift f(x,t) and diffusion g(x,t) parts in each of these equations?

Answer:

- **a)** $f(x,t) = \mu, \ g(x,t) = \sigma$
- **b)** $f(x,t) = \mu x(t), g(x,t) = \sigma$
- **c)** $f(x,t) = \mu x(t), g(x,t) = \sigma x(t)$
- **d)** $f(x.t) = \sin(x(t)), g(x,t) = \cos(x(t))$